17 research outputs found

    DETECTION OF HEALTH-RELATED BEHAVIOURS USING HEAD-MOUNTED DEVICES

    Get PDF
    The detection of health-related behaviors is the basis of many mobile-sensing applications for healthcare and can trigger other inquiries or interventions. Wearable sensors have been widely used for mobile sensing due to their ever-decreasing cost, ease of deployment, and ability to provide continuous monitoring. In this dissertation, we develop a generalizable approach to sensing eating-related behavior. First, we developed Auracle, a wearable earpiece that can automatically detect eating episodes. Using an off-the-shelf contact microphone placed behind the ear, Auracle captures the sound of a person chewing as it passes through the head. This audio data is then processed by a custom circuit board. We collected data with 14 participants for 32 hours in free-living conditions and achieved accuracy exceeding 92.8% and F1 score exceeding77.5% for eating detection with 1-minute resolution. Second, we adapted Auracle for measuring childrenā€™s eating behavior, and improved the accuracy and robustness of the eating-activity detection algorithms. We used this improved prototype in a laboratory study with a sample of 10 children for 60 total sessions and collected 22.3 hours of data in both meal and snack scenarios. Overall, we achieved 95.5% accuracy and 95.7% F1 score for eating detection with 1-minute resolution. Third, we developed a computer-vision approach for eating detection in free-living scenarios. Using a miniature head-mounted camera, we collected data with 10 participants for about 55 hours. The camera was fixed under the brim of a cap, pointing to the mouth of the wearer and continuously recording video (but not audio) throughout their normal daily activity. We evaluated performance for eating detection using four different Convolutional Neural Network (CNN) models. The best model achieved 90.9% accuracy and 78.7%F1 score for eating detection with 1-minute resolution. Finally, we validated the feasibility of deploying the 3D CNN model in wearable or mobile platforms when considering computation, memory, and power constraints

    Analog Gated Recurrent Neural Network for Detecting Chewing Events

    Full text link
    We present a novel gated recurrent neural network to detect when a person is chewing on food. We implemented the neural network as a custom analog integrated circuit in a 0.18 um CMOS technology. The neural network was trained on 6.4 hours of data collected from a contact microphone that was mounted on volunteers' mastoid bones. When tested on 1.6 hours of previously-unseen data, the neural network identified chewing events at a 24-second time resolution. It achieved a recall of 91% and an F1-score of 94% while consuming 1.1 uW of power. A system for detecting whole eating episodes -- like meals and snacks -- that is based on the novel analog neural network consumes an estimated 18.8uW of power.Comment: 11 pages, 16 figure

    ERICA: Enabling real-time mistake detection and corrective feedback for free-weights exercises

    Get PDF
    National Research Foundation (NRF) Singapore under International Research Centres in Singapore Funding Initiativ

    Detecting Eating Episodes with an Ear-mounted Sensor

    Get PDF
    In this paper, we propose Auracle, a wearable earpiece that can automatically recognize eating behavior. More specifically, in free-living conditions, we can recognize when and for how long a person is eating. Using an off-the-shelf contact microphone placed behind the ear, Auracle captures the sound of a person chewing as it passes through the bone and tissue of the head. This audio data is then processed by a custom analog/digital circuit board. To ensure reliable (yet comfortable) contact between microphone and skin, all hardware components are incorporated into a 3D-printed behind-the-head framework. We collected field data with 14 participants for 32 hours in free-living conditions and additional eating data with 10 participants for 2 hours in a laboratory setting. We achieved accuracy exceeding 92.8% and F1 score exceeding 77.5% for eating detection. Moreover, Auracle successfully detected 20-24 eating episodes (depending on the metrics) out of 26 in free-living conditions. We demonstrate that our custom device could sense, process, and classify audio data in real time. Additionally, we estimateAuracle can last 28.1 hours with a 110 mAh battery while communicating its observations of eating behavior to a smartphone over Bluetooth

    Eating detection with a head-mounted video camera

    Get PDF
    In this paper, we present a computer-vision based approach to detect eating. Specifically, our goal is to develop a wearable system that is effective and robust enough to automatically detect when people eat, and for how long. We collected video from a cap-mounted camera on 10 participants for about 55 hours in free-living conditions. We evaluated performance of eating detection with four different Convolutional Neural Network (CNN) models. The best model achieved accuracy 90.9% and F1 score 78.7% for eating detection with a 1-minute resolution. We also discuss the resources needed to deploy a 3D CNN model in wearable or mobile platforms, in terms of computation, memory, and power. We believe this paper is the first work to experiment with video-based (rather than image-based) eating detection in free-living scenarios

    3-Dimensional Modeling and Simulation of the Cloud Based on Cellular Automata and Particle System

    No full text
    The authors combine the cellular automata with particle system to realize the three-dimensional modeling and visualization of the cloud in the paper. First, we use the principle of particle systems to simulate the outline of the cloud; generate uniform particles in the bounding volumes of the cloud through random function; build the cloud particle system; and initialize the particle number, size, location and related properties. Then the principle of cellular automata system is adopted to deal with uniform particles simulated by the particle system to make it conform to the rules set by the user, and calculate its continuous field density. We render the final cloud particles with a texture map and simulate the more realistic three-dimensional cloud. This method not only obtains the real effect in the simulation, but also improves the rendering performance

    A Double-Smoothing Algorithm for Integrating Satellite Precipitation Products in Areas with Sparsely Distributed In Situ Networks

    No full text
    The spatial distribution of automatic weather stations in regions of western China (e.g., Tibet and southern Xingjiang) is relatively sparse. Due to the considerable spatial variability of precipitation, estimations of rainfall that are interpolated in these areas exhibit considerable uncertainty based on the current observational networks. In this paper, a new statistical method for estimating precipitation is introduced that integrates satellite products and in situ observation data. This method calculates the differences between raster data and point data based on the theory of data assimilation. In regions in which the spatial distribution of automatic weather stations is sparse, a nonparametric kernel-smoothing method is adopted to process the discontinuous data through correction and spatial interpolation. A comparative analysis of the fusion method based on the double-smoothing algorithm proposed here indicated that the method performed better than those used in previous studies based on the average deviation, root mean square error, and correlation coefficient values. Our results indicate that the proposed method is more rational and effective in terms of both the efficiency coefficient and the spatial distribution of the deviations

    Towards the Rational Design of Stable Electrocatalysts for Green Hydrogen Production

    No full text
    Now, it is time to set up reliable water electrolysis stacks with active and robust electrocatalysts to produce green hydrogen. Compared with catalytic kinetics, much less attention has been paid to catalyst stability, and the weak understanding of the catalyst deactivation mechanism restricts the design of robust electrocatalysts. Herein, we discuss the issues of catalystsā€™ stability evaluation and characterization, and the degradation mechanism. The systematic understanding of the degradation mechanism would help us to formulate principles for the design of stable catalysts. Particularly, we found that the dissolution rate for different 3d transition metals differed greatly: Fe dissolves 114 and 84 times faster than Co and Ni. Based on this trend, we designed Fe@Ni and FeNi@Ni core-shell structures to achieve excellent stability in a 1 A cmāˆ’2 current density, as well as good catalytic activity at the same time

    Measuring childrenā€™s eating behavior with a wearable device

    No full text
    Poor eating habits in children and teenagers can lead to obesity, eating disorders, or life-threatening health problems. Although researchers have studied childrenā€™s eating behavior for decades, the research community has had limited technology to support the observation and measurement of fine-grained details of a childā€™s eating behavior. In this paper, we present the feasibility of adapting the Auracle, an existing research-grade earpiece designed to automatically and unobtrusively recognize eating behavior in adults, for measuring childrenā€™s eating behavior. We identified and addressed several challenges pertaining to monitoring eating behavior in children, paying particular attention to device fit and comfort. We also improved the accuracy and robustness of the eating-activity detection algorithms. We used this improved prototype in a lab study with a sample of 10 children for 60 total sessions and collected 22.3 hours of data in both meal and snack scenarios. Overall, we achieved an accuracy exceeding 85.0% and an F1 score exceeding 84.2% for eating detection with a 3-second resolution, and a 95.5% accuracy and a 95.7% F1 score for eating detection with a 1-minute resolution
    corecore